Hacia 1787, el alemán Chladni, considerado uno de los pioneros de la física acústica, estudia por primera vez estas líneas nodales.
Con estudios de Derecho, músico aficionado y un entusiasta de la ciencia, Chladni encuentra la ley que lleva su nombre, una relación sencilla entre los modos propios de vibración de una placa. Para ello, se valió de placas sujetas por el centro sobre las que espolvoreaba arena fina. Al hacerlas vibrar con un arco de violín, los patrones de las líneas nodales se hacen visibles, pues sobre esas líneas se acumula la arena rebotada de las otras zonas vibrantes.
De esta forma, cada frecuencia natural de vibración de la placa corresponde con un patrón determinado. Chladni trasladó cuidadosamente al papel cada uno de los patrones que iba encontrando, lo que permitió popularizarlos, mientras se dedicaba a realizar demostraciones ante el fascinado público europeo.
La ley de Chladni relaciona la frecuencia aproximada de la vibración de un platillo circular, de centro fijo, con el número de líneas nodales radiales (m) y no radiales (n):Cuando Chladni repitió este experimento en la Academia de Ciencias de París, en 1808, se oyó una exclamación de asombro: “¡el sonido puede verse!”. Era la voz de Napoleón Bonaparte.
f = C (m + 2n)2
donde el valor de la constante C sólo depende, en principio, de las propiedades del platillo. Sin embargo, el exponente puede sufrir variaciones en distintos rangos de frecuencias incluso para el mismo platillo, aunque siempre ronda el valor 2. Una expresión más general, del tipo:
f = C (m + bn)c
amplía la relación anterior, para distintos valores de b y c, a platillos circulares no planos como los címbalos, las campanas y las campanillas.
En el caso de placas y membranas circulares sujetas por su borde (tambores y timbales, por ejemplo), los patrones obtenidos se componen de diámetros y circunferencias concéntricas. En la siguiente imagen vemos algunos. Debajo de cada dibujo aparece la frecuencia relativa con respecto a la frecuencia fundamental. Observemos que, al contrario de lo que pasaba con la cuerda vibrante, las sucesivas frecuencias naturales (los sucesivos parciales) no son múltiplos enteros de la fundamental (no son armónicos).
Curiosamente, patrones similares aparecen al representar gráficamente la función de probabilidad de los distintos orbitales de los electrones:
Pero la ley de Chladni, además de ser una aproximación, sólo recoge la observación del fenómeno, clasificando las figuras obtenidas, pero no las explica. Napoleón había quedado tan profundamente impresionado por las figuras que mostraban las placas que ofreció una fuerte recompensa por una explicación.
Naturalmente, para encontrar esta explicación será necesario modelizar matemáticamente el fenómeno físico. En 1809, la matemática francesa Sophie Germain comienza a trabajar en el problema, pero no es hasta 1816 cuando, en su tercer intento, consigue ganar el premio otorgado por la Academia Francesa de las Ciencias.
El éxito de Germain se considera mucho más que un premio. Ella había luchado toda su vida por poner su talento por encima de los prejuicios contra su sexo. También es sabido que mantuvo correspondencia y amistad con el príncipe de las matemáticas, Gauss, a quien le protegió, gracias a su influencia con Napoleón, al invadir las fuerzas napoleónicas la ciudad natal de Gauss, Brunswick (cerca de Hannover), por temor a que le ocurriese algo similar a lo que le sucedió a Arquímedes.
Resonancia
La placa se puede hacer vibrar por excitación directa, frotándola con un arco o agitándola con algún tipo de sistema mecánico o electromecánico. Pero también podemos conseguir que vibre por resonancia, mediante un emisor de sonidos con suficiente intensidad. Esto suele hacerse colocando un altavoz justo encima o debajo de la placa, como sucede en la siguiente película, en donde la arena ha sido reemplazada por sal.
Si, en vez de provocar la vibración de una superficie sólida, usamos una fina película líquida colocada sobre una membrana tirante y la exponemos a una intensa iluminación lateral, el resultado puede ser realmente espectacular, como muestran las siguientes fotografías de Alexander Lauterwasser (cuyo apellido resulta ser de lo más apropiado).Vibraciones líquidas
Los patrones que hemos visto resultan de gran utilidad para mejorar la calidad en la construcción de violines y otros instrumentos de cuerda al poder comprobar el luthier si se reproducen o no las figuras de Chladni sobre la tapa y la base, corrigiendo cualquier asimetría que pudiera presentarse.Los instrumentos de cuerda
En esta fotografía podemos ver el resultado de un experimento sobre el fondo de la caja de un violín.
Laboratorio virtual
Con ayuda de los siguientes applets de Paul Fasltad podemos recrearnos en la visualización (en dos o en tres dimensiones) de los distintos modos de vibración de membranas rectangulares y circulares. Aunque las etiquetas y las instrucciones se encuentran en inglés, basta jugar un poco con el ratón y los deslizadores (lo que recomendamos vivamente) para apreciar el funcionamiento. ¡Incluso podemos oír el sonido correspondiente, activando la casilla Sound!
Pueden imaginar si se observara toda la música que se escucha hoy en día ?
Fuente : DivulgaMat
fascinante!
ResponderEliminar